

Fort Street High School

2022

HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 10 minutes
- Working Time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks: 100

Section I – 10 marks (pages 2 – 5)

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 6 - 11)

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

NAME:		_	TE	ACH	ER:		 	
STUDENT NUMBER:								

Question	1-10	11	12	13	14	15	16	Total
Mark								
	/10	/16	/16	/15	/14	/14	/15	/100

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 What is the unit vector in the same direction as a = 2i + j - 3k?

A.
$$\frac{-1}{14} \begin{vmatrix} 2 \\ 1 \\ -3 \end{vmatrix}$$

B.
$$\frac{-1}{14} \begin{vmatrix} 2 \\ -1 \\ 3 \end{vmatrix}$$

C.
$$\frac{-1}{\sqrt{14}} \begin{vmatrix} 2 \\ -1 \\ 3 \end{vmatrix}$$

D.
$$\frac{1}{\sqrt{14}} \begin{vmatrix} 2\\1\\-3 \end{vmatrix}$$

Given that $z^n = a + bi$ and |z| = 1 where a and b are real, which of the following is equal to z^{-n} ?

A.
$$a+bi$$

B.
$$a-bi$$

C.
$$-a+bi$$

D.
$$-a-bi$$

3 Consider the statement below:

"If z is even, then x and y are either both even or both odd."

Which of the following is equivalent to the above statement?

- A. If x and y are either both even or both odd, then z is even.
- B. If z is odd, then exactly one of x and y is even.
- C. If x and y are either both even or both odd, then z is odd.
- D. If exactly one of x and y is even, then z is odd.

4 Consider the vectors
$$\overrightarrow{OA} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\overrightarrow{OB} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\overrightarrow{OC} = \begin{bmatrix} 3 \\ \mu \\ \lambda \end{bmatrix}$, where O is the origin.

What are the values of μ and λ if the points A, B and C are collinear?

A.
$$\mu = 3$$
, $\lambda = 2$

B.
$$\mu = -3$$
, $\lambda = 2$

C.
$$\mu = 3$$
, $\lambda = -2$

D.
$$\mu = -3$$
, $\lambda = -2$

One of the roots of the quadratic equation $iz^2 + 3z + 3 - 11i = 0$ is 3 + 2i.

What is the other root?

A.
$$-2i$$

B.
$$-3+i$$

C.
$$3-2i$$

D.
$$-5-3i$$

6 Which of the following is the locus of z such that $\arg(z+3i) - \arg(z-i) = \frac{\pi}{2}$?

A.

B.

C.

D.

Which of the following definite integrals has a positive value?

A.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} x^3 (1 + \cos x) \, dx$$

B.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{\sin^{-1} x}{1 + x^4} \right) dx$$

C.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{\cos^{-1} x}{e^{-x^2}} \right) dx$$

D.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{\tan^{-1} x}{e^x + e^{-x}} \right) dx$$

8 Given that z is a complex number such that $Re(z) \neq 0$, which of the following is

equivalent to
$$\frac{4z\overline{z}}{(z+\overline{z})^2}$$
?

A.
$$1 + \left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)^2$$

B.
$$4(\operatorname{Im}(z) \times \operatorname{Re}(z))$$

C.
$$4\left(1+\left[\operatorname{Im}(z)+\operatorname{Re}(z)\right]^{2}\right)$$

D.
$$\frac{2 \times \operatorname{Im}(z)}{\left[\operatorname{Re}(z)\right]^2}$$

9 Which of the following is the negation of the statement:

" $\forall p \in P \ p$ is of the form $4m+1 \Rightarrow p$ can be written as a sum of two squares"?

- A. $\forall p \in P$, p is of the form 4m+1 and p cannot be written as a sum of two squares.
- B. $\exists p \in P$, p is not of the form 4m+1 and p can be written as a sum of two squares.
- C. $\forall p \in P$, p is not of the form 4m+1 or p cannot be written as a sum of two squares.
- D. $\exists p \in P$, p is of the form 4m+1 and p cannot be written as a sum of two squares.

10 In the diagram the vectors OP and OQ represent the complex numbers z_1 and z_2 respectively.

If $\frac{z_2}{z_1} = \sqrt{3}i$, what is the value of $\left| \frac{z_1 + z_2}{z_2 - z_1} \right|$?

- A. 1
- B. $\sqrt{3}$
- C. $\frac{1}{\sqrt{3}}$
- D. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (16 marks) Use a SEPARATE writing booklet

- (a) If $z = -\sqrt{3} + i$ and w = 1 + i:
 - (i) Find Arg(zw) in terms of π .
 - (ii) Write $\frac{z}{w}$ in the form x + iy, where x and y are real numbers.

2

2

2

(b) Sketch the region on the Argand diagram where:

$$arg(z+1-2i) = arg(z-3+i)$$
.

- (c) Find the vector equation for the sphere $x^2 + 4x + y^2 6y + z^2 = 12$.
- (d) Point A has position vector $8\underline{i} + 13\underline{j} 2\underline{k}$ the point B has position vector $10\underline{i} + 14\underline{j} 4\underline{k}$ and the point C has position vector $9\underline{i} + 9\underline{j} + 6\underline{k}$.

(i) Find
$$\overrightarrow{AB}$$
.

(ii) Fin
$$|CB|$$
.

- (iii) What is the size of the acute angle between \overrightarrow{AB} and \overrightarrow{CB} ?

 Answer correct to the nearest degree.
- (e) Find $\int \frac{1}{\sqrt{5+4x-x^2}} dx$.

Question 12 (16 marks) Use a SEPARATE writing booklet

- (a) (i) Find A and B such that $\frac{15}{x^2 2x 15} = \frac{A}{x + 3} + \frac{B}{x 5}$.
 - (ii) Hence or otherwise find $\int \frac{x^2 2x}{x^2 2x 15} dx$.
- (b) Evaluate $\int_0^{\frac{\pi}{4}} \sec^4 x \tan^2 x \, dx .$ 3
- (c) Use proof by contrapositive to prove that:

If $a^2 - 2a + 7$ is even then a is odd.

- (d) Solve $\left| e^{i\theta} + \sqrt{2} \right| = 1$.
- (e) Use the substitution $x = 2\sin\theta$ to find $\int \frac{dx}{\left(4 x^2\right)^{\frac{3}{2}}}$.

Question 13 (14 marks) Use a SEPARATE writing booklet

(a) Find
$$\int \cos^{-1} x \, dx$$

(b) Use the substitution $t = \tan \frac{x}{2}$ or otherwise to evaluate:

$$\int_0^{\frac{\pi}{2}} \frac{1}{3\sin x - 4\cos x + 5} \, dx.$$

- (c) The line l_1 passes through the points A(2,-1,4) and B(4,-3,2).
 - (i) Show that a vector equation of line l_1 is $r = \lambda \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$.
 - (ii) The equation of line l_2 is given by $\frac{x+3}{k} = \frac{4-y}{6} = z-1$.

 3 Find the value of k for which l_1 and l_2 intersect.
- (d) The diagram shows a triangle ABC.The points X, Y and Z bisect the intervals AB, BC and CA respectively.

Show that $\overrightarrow{AY} + \overrightarrow{BZ} + \overrightarrow{CX} = 0$

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) If
$$x \le 1$$
 and $y \ge 1$ show that $x + y \ge 1 + xy$.

2

2

(b) Simplify fully
$$\frac{1}{1+\omega} + \frac{1}{1+\omega^2}$$
, given that ω is a non-real cube root of unity.

(c) As shown on the Argand diagram below, the complex numbers z and zw are represented by the points A and B respectively.

Given $z = re^{i\theta}$ and $w = e^{i\frac{\pi}{3}}$, where r > 0,

- (i) Explain why *OAB* is an equilateral triangle.
- (ii) Write the complex number z zw in exponential form in terms of r and θ .

(d) Use a suitable substitution to show that
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

(ii) Hence, or otherwise, evaluate
$$\int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x + \sin x} dx.$$
 3

(e) A recurrence relation is defined by
$$u_{n+1} = \frac{3u_n - 1}{4u_n - 1}$$
 and $u_1 = 1$.

Use Mathematical Induction to prove that $u_n = \frac{n}{2n-1}$ for $n \ge 1$.

Question 15 (14 marks) Use a SEPARATE writing booklet

(a) (i) Show that $a^2 + 9b^2 \ge 6ab$, where a and b are real numbers. 1

(ii) Hence, or otherwise, show that $a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$.

(iii) Hence if a > b > c > 0, show that $a^2 + 5b^2 + 9c^2 > 9bc$.

(b) Consider the integral $I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx$.

Use integration by parts to show that $I_n = \frac{2n}{2n+1}I_{n-1}$.

Question 15 Continues on Page 13

(c) The diagram below shows the line with vector equation $r = \lambda \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$.

The point $P(x_1, y_1, z_1)$ is any point in the three-dimensional space. Q is the point on r such that PQ is a minimum.

(i) Using vector projection methods show that:

$$\overrightarrow{OQ} = \frac{x_1 + 3y_1 + z_1}{11} \begin{bmatrix} 1\\3\\1 \end{bmatrix}.$$

It is given that line $c = \begin{vmatrix} 1 \\ 4 \\ 0 \end{vmatrix} + t \begin{vmatrix} -1 \\ 1 \\ 5 \end{vmatrix}$ does not intersect c.

Point T is on the line \underline{c} and S is a point on \underline{r} such that TS is a minimum.

(ii) By first expressing \underline{c} in parametric form, find an expression for the vector \overrightarrow{TS} in terms of t.

3

2

Question 16 (15 marks) Use a SEPARATE writing booklet

(a) (i) Prove that:

2

$$\frac{\cos\theta + i\sin\theta - 1}{\cos\theta + i\sin\theta + 1} = i\tan\frac{\theta}{2}.$$

- (ii) Find the roots of the equation $w^5 = 1$. Express your answers in the form $(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$.
- (iii) Using parts (i) and (ii) find the roots of the equation:

3

$$\left(\frac{2+z}{2-z}\right)^5 = 1$$

- (b) Show that $\frac{1}{(k-1)k(k+1)} \ge \frac{1}{k^3}$ where k is a positive integer greater than 1.
 - (ii) Given that:

$$S_n = \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \dots + \frac{1}{n^3}$$
 where *n* is an integer and $n \ge 3$.

Using part (i) or otherwise, prove that $S_n < \frac{1}{12}$.

(c) Find $\int \frac{\ln x - 1}{\left[x + \ln x\right]^2} dx.$

End of paper

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 What is the unit vector in the same direction as a = 2i + j - 3k?

A.
$$\frac{-1}{14} \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$$

B.
$$\frac{-1}{14} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

C.
$$\frac{-1}{\sqrt{14}} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

$$\begin{array}{ccc}
\boxed{D.} & \frac{1}{\sqrt{14}} \begin{bmatrix} 2\\1\\-3 \end{bmatrix}$$

Given that $z^n = a + bi$ and |z| = 1 where a and b are real, which of the following is equal to z^{-n} ?

A.
$$a+bi$$

(B.)
$$a-bi$$

C.
$$-a+bi$$

D.
$$-a-bi$$

3 Consider the statement below:

"If z is even, then x and y are either both even or both odd."

Which of the following is equivalent to the above statement?

- A. If x and y are either both even or both odd, then z is even.
- B. If z is odd, then exactly one of x and y is even.
- C. If x and y are either both even or both odd, then z is odd.
- \bigcirc D. If exactly one of x and y is even, then z is odd.
- 4 Consider the vectors $\overrightarrow{OA} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\overrightarrow{OB} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\overrightarrow{OC} = \begin{bmatrix} 3 \\ \mu \\ \lambda \end{bmatrix}$, where O is the origin.

What are the values of μ and λ if the points A, B and C are collinear?

- A. $\mu = 3$, $\lambda = 2$
- $(B.) \mu = -3, \lambda = 2$
- C. $\mu = 3$, $\lambda = -2$
- D. $\mu = -3$, $\lambda = -2$
- 5 One of the roots of the quadratic equation $iz^2 + 3z + 3 11i = 0$ is 3 + 2i.

What is the other root?

- A. -2i
- -3+i
 - C. 3-2i
 - D. -5-3i

6 Which of the following is the locus of z such that $\arg(z+3i) - \arg(z-i) = \frac{\pi}{2}$?

A.

В.

(C.

D.

Which of the following definite integrals has a positive value?

A.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} x^3 (1 + \cos x) \, dx$$

B.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{\sin^{-1} x}{1 + x^4} \right) dx$$

C.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{\cos^{-1} x}{e^{-x^2}} \right) dx$$

D.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{\tan^{-1} x}{e^x + e^{-x}} \right) dx$$

8 Given that z is a complex number such that $Re(z) \neq 0$, which of the following is

equivalent to
$$\frac{4z\overline{z}}{(z+\overline{z})^2}$$
?

B.
$$4(\operatorname{Im}(z) \times \operatorname{Re}(z))$$

C.
$$4\left(1+\left[\operatorname{Im}(z)+\operatorname{Re}(z)\right]^{2}\right)$$

D.
$$\frac{2 \times \operatorname{Im}(z)}{\left[\operatorname{Re}(z)\right]^2}$$

9 Which of the following is the negation of the statement:

" $\forall p \in P \ p$ is of the form $4m+1 \Rightarrow p$ can be written as a sum of two squares"?

- A. $\forall p \in P$, p is of the form 4m+1 and p cannot be written as a sum of two squares.
- B. $\exists p \in P$, p is not of the form 4m+1 and p can be written as a sum of two squares.
- C. $\forall p \in P$, p is not of the form 4m+1 or p cannot be written as a sum of two squares.
- D. $\exists p \in P$, p is of the form 4m+1 and p cannot be written as a sum of two squares.

In the diagram the vectors OP and OQ represent the complex numbers z_1 and z_2 respectively.

If $\frac{z_2}{z_1} = \sqrt{3}i$, what is the value of $\left| \frac{z_1 + z_2}{z_2 - z_1} \right|$?

- A.) 1
- B. $\sqrt{3}$
- C. $\frac{1}{\sqrt{3}}$
- D. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

Section II

90 marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (16 marks) Use a SEPARATE writing booklet

$$: i + I = w \text{ bns } i + \overline{\mathcal{E}} - = z \text{ II}$$
 (s)

$$\frac{\pi}{2} = w \operatorname{gra} \operatorname{dr} \operatorname{d$$

2 Find Arg
$$(\pi)$$
 in terms of π .

$$\frac{\overline{z}}{\underline{\xi}} + \underline{1} + \underline{\xi} - \underline{z}$$

$$\frac{\overline{z}}{\underline{\xi}} + \underline{1} + \underline{\xi} - \underline{z}$$

$$\frac{i+1}{i+\xi} - \underline{z}$$

$$\frac{i+1}{i+\xi} - \underline{z}$$

$$\frac{i+1}{i+\xi} - \underline{z}$$

(ii) Write
$$\frac{z}{w}$$
 in the form $x+iy$, where x and y are real numbers.

(b) Sketch the region on the Argand diagram where:

2

2

$$arg(z+1-2i) = arg(z-3+i)$$
.

$$(x^2 + 4x + 4) + (y^2 - 6y + 9) + z^2 = 12 + 4 + 9$$
$$(x+2)^2 + (y-3)^2 + z^2 = 25$$

Centre is (-2,3,0) Radius is 5.

Vector equation is
$$\begin{bmatrix} r - \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix} = 5$$

- (c) Find the vector equation for the sphere $x^2 + 4x + y^2 6y + z^2 = 12$.
- (d) Point A has position vector $8\underline{i} + 13\underline{j} 2\underline{k}$ the point B has position vector $10\underline{i} + 14\underline{j} 4\underline{k}$ and the point C has position vector $9\underline{i} + 9\underline{j} + 6\underline{k}$.

$$\overrightarrow{AB} = \begin{bmatrix} 10\\14\\-4 \end{bmatrix} - \begin{bmatrix} 8\\13\\-2 \end{bmatrix} = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$

(i) Find \overrightarrow{AB} .

(ii) Find $|\overline{GB}|$

7

 $= \sqrt{1+25+100}$ $= \sqrt{1+25+100}$ $= \sqrt{(9-10)^2 + (9-14)^2 + (6+4)^2}$

(iii) What is the size of the acute angle between \overline{AB} and \overline{CB} ?

 $\theta \approx 3.1^{\circ}$ $\theta = \cos_{-1}\left(\frac{\sqrt{14}}{3}\right)$ $= \frac{\sqrt{14}}{2}$ $= \frac{3 \times 3\sqrt{14}}{2 \times 3 \times 10^{\circ}}$ $= \frac{3 \times 3\sqrt{14}}{2 \times 3\sqrt{14}}$ $= \frac{3 \times 3\sqrt{14}}{2 \times 3\sqrt$

Answer correct to the nearest degree.

 $-xb = \frac{1}{\sqrt{x-x+2}} \int bni H$

(e)

7

$$\int \frac{1}{\sqrt{5+4x-x^2}} dx = \int \frac{1}{\sqrt{5-(x^2-4x)}} dx$$

$$= \int \frac{1}{\sqrt{5+4-(x^2-4x+4)}} dx$$

$$= \int \frac{1}{\sqrt{3^2-(x-2)^2}} dx$$

$$= \sin^{-1}\left(\frac{x-2}{3}\right) + C$$

End of Question 11

Question 12 (16 marks) Use a SEPARATE writing booklet

(a) (i) Find A and B such that
$$\frac{15}{x^2 - 2x - 15} = \frac{A}{x + 3} + \frac{B}{x - 5}$$
.

$$\frac{15}{x^2 - 2x - 15} = \frac{A}{x+3} + \frac{B}{x-5}$$
$$15 = A(x-5) + B(x+3)$$

1 - correct answer for A

1 - correct answer for B

Let
$$x = 5$$

 $15 = +B(5+3)$

$$\frac{15}{8} = B$$

Let
$$x = -3$$

Let
$$x = -3$$

15 = $A(-3-5)$

$$-\frac{15}{8} = A$$

$$\frac{15}{x^2 - 2x - 15} = -\frac{15}{8(x+3)} + \frac{15}{8(x-5)}$$

(ii) Hence or otherwise find
$$\int \frac{x^2 - 2x}{x^2 - 2x - 15} dx$$
.

$$\int \frac{x^2 - 2x}{x^2 - 2x - 15} dx = \int \frac{x^2 - 2x - 15 + 15}{x^2 - 2x - 15} dx$$

$$= \int \frac{x^2 - 2x + 15}{x^2 - 2x - 15} dx + \int \frac{15}{x^2 - 2x - 15} dx$$

$$= \int dx + \int \frac{15}{x^2 - 2x - 15} dx$$

$$= \int dx - \frac{15}{8} \int \frac{1}{x + 3} dx + \frac{15}{8} \int \frac{1}{x - 5} dx$$

$$= x + \frac{15}{8} \left[\ln(x - 5) - \ln(x + 3) \right] + C$$

$$= x + \frac{15}{8} \ln\left(\frac{x - 5}{x + 3}\right) + C$$

1 – correct expansion or equivalent merit

1 - correct integral

1 - correct answer

(b) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \sec^4 x \tan^2 x \, dx$$
.

3

$$\int_0^{\frac{\pi}{4}} \sec^4 x \tan^2 x dx = \int_0^{\frac{\pi}{4}} \sec^2 x \sec^2 x \tan^2 x dx$$

$$= \int_0^{\frac{\pi}{4}} \sec^2 x \left(1 + \tan^2 x\right) \tan^2 x dx$$

$$= \int_0^{\frac{\pi}{4}} \sec^2 x \left(\tan^2 x + \tan^4 x\right) dx$$

$$= \int_0^{\frac{\pi}{4}} \sec^2 x \tan^2 x dx + \int_0^{\frac{\pi}{4}} \sec^2 x \tan^4 x dx$$

$$= \left[\frac{\tan^3 x}{3} + \frac{\tan^5 x}{5}\right]_0^{\frac{\pi}{4}}$$

$$= \left(\frac{\tan^3 \frac{\pi}{4}}{3} + \frac{\tan^5 \frac{\pi}{4}}{5}\right) - \left(\frac{\tan^3 0}{3} + \frac{\tan^5 0}{5}\right)$$

$$= \frac{1}{3} + \frac{1}{5} = \frac{8}{15}$$

- 1 correct expansion or equivalent merit
- 1 correct integral
- 1 correct answer

Alternative Solution

$$\int_0^{\frac{\pi}{4}} \sec^4 x \tan^2 x \, dx = \int_0^{\frac{\pi}{4}} \sec^2 x \times \sec^2 x \times \tan^2 x \, dx$$

$$= \int_0^{\frac{\pi}{4}} \left(1 + \tan^2 x \right) \times \tan^2 x \times \sec^2 x \, dx$$
Let $u = \tan x$ when $x = \frac{\pi}{4}$ $u = 1$

$$du = \sec^2 x \, dx$$
 when $x = 0$ $u = 0$

$$\int_0^1 \left(1 + u^2 \right) \times u^2 \, du = \left[\frac{u^3}{2} + \frac{u^5}{4} \right]^1$$

$$\int_0^1 (1+u^2) \times u^2 du = \left[\frac{u^3}{3} + \frac{u^5}{5} \right]_0^1$$
$$= \frac{8}{15}$$

If $a^2 - 2a + 7$ is even then a is odd.

Contrapositive is:

If a is not odd then $a^2 - 2a + 7$ is not even. Which is equivalent to

If a is even then $a^2 - 2a + 7$ is odd.

Let a = 2k where k is an integer.

Then:

 ${f 1}$ – defining k as an integer or equivalent merit

1 – qualifying
$$2k^2 - 2k + 3$$
 as an integer and $2(2k^2 - 2k + 3) + 1$ as odd

$$a^{2}-2a+7 = (2k)^{2}-2(2k)+7$$
$$= 2(2k^{2}-2k+3)+1$$

 $= 2(2k^2 - 2k + 3) + 1$ $2k^2 - 2k + 3$ is an integer as k is an integer

$$\therefore 2(2k^2 - 2k + 3) + 1 \text{ is odd}$$

Thus If a is even then $a^2 - 2a + 7$ is odd.

Thus If $a^2 - 2a + 7$ is even then a is odd.

$$I = \left| \frac{\partial}{\partial V} + \frac{\partial}{\partial V} \right| \text{ and } V$$

Algebraic Solution

ε

1 – correct calculation of magnitude

2 – correct answer for both angles

$$I = \left| \overline{Z} V + \theta^{i} S \right|$$

$$I = \left| \overline{Z} V + \theta \sin i + \theta \sin i \right|$$

$$I = \left| \overline{Z} V + \theta \sin i + \theta \sin i \right|$$

$$I = \left| \overline{Z} V + \theta \sin i \right| + \theta \sin i$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \sin i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \cos i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \cos i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \cos i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \cos i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \cos i) + \frac{1}{2} (\overline{Z} V + \theta \sin i) \right|$$

$$I = \left| \frac{1}{2} (\theta \cos i) + \frac{1}{2} (\overline{Z} V$$

Geometric Solution

 $e^{i\theta}$ is a vector with endpoint on the unit circle. And $\sqrt{2}$ is a horizontal vector of length $\sqrt{2}$

Triangle OAB is isosceles right-angle triangle. $\alpha = \frac{\pi}{4}$ and so $\theta = \frac{\pi}{4}$ But $\left|e^{i\theta} + \sqrt{2}\right| = 1$ and so $e^{i\theta} + \sqrt{2}$ must have its endpoint on the unit circle.

 $\frac{\pi \xi^{-}}{\hbar} = \theta$ os bas and also brint and so la bluos \hbar

(e) Use the substitution
$$x = 2\sin\theta$$
 to find $\int \frac{dx}{(4-x^2)^{\frac{3}{2}}}$.

$$\int \frac{dx}{(4-x^2)^{\frac{3}{2}}} = \int \frac{2\cos\theta}{\sqrt{(4-4\sin^2\theta)^3}} d\theta$$

$$= \int \frac{2\cos\theta}{8\cos^3\theta} d\theta$$

$$= \frac{1}{4} \int \frac{1}{\cos^2\theta} d\theta$$

$$= \frac{1}{4} \int \sec^2\theta d\theta$$

$$= \frac{1}{4} \tan\theta + C$$

$$= \frac{x}{4\sqrt{4-x^2}} + C$$

$$x = 2\sin\theta$$

$$dx = 2\cos\theta d\theta$$

$$\frac{x}{2} = \sin\theta$$

$$\tan\theta = \frac{x}{\sqrt{4-x^2}}$$

End of Question 12

Question 13 (14 marks) Use a SEPARATE writing booklet

(a) Find
$$\int \cos^{-1} x \, dx$$

$$I = \int \cos^{-1} x \, dx$$

$$u = \cos^{-1} x \qquad v' = 1$$

$$u' = \frac{-1}{\sqrt{1 - x^2}} \qquad v = x$$

$$I = x \cos^{-1} x - \int x \left(\frac{-1}{\sqrt{1 - x^2}} \right) dx$$

$$= x \cos^{-1} x - \frac{1}{2} \int \left(\frac{-2x}{\sqrt{1 - x^2}} \right) dx$$

$$= x \cos^{-1} x - \frac{1}{2} \int \left(-2x \left(1 - x^2 \right)^{-\frac{1}{2}} \right) dx$$

$$= x \cos^{-1} x - \frac{1}{2} \frac{\left(1 - x^2 \right)^{\frac{1}{2}}}{\frac{1}{2}} + C$$

$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

- 1 application of partial integration
- **1** working towards the final solution
- 1 final answer

(b) Use the substitution
$$t = \tan \frac{x}{2}$$
 or otherwise to evaluate:

$$\int_0^{\frac{\pi}{2}} \frac{1}{3\sin x - 4\cos x + 5} \, dx \, .$$

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{3\sin x - 4\cos x + 5} dx = \int_{0}^{1} \frac{1}{3\left(\frac{2t}{1+t^{2}}\right) - 4\left(\frac{1-t^{2}}{1+t^{2}}\right) + 5} \times \frac{2}{1+t^{2}} dt$$

$$= \int_{0}^{1} \frac{2}{6t - 4\left(1-t^{2}\right) + 5\left(1+t^{2}\right)} dt$$

$$= \int_{0}^{1} \frac{2}{6t + 1 + 9t^{2}} dt$$

$$= \frac{2}{9} \int_{0}^{1} \frac{1}{t^{2} + \frac{2}{3}t + \frac{1}{9}} dt$$

$$= \frac{2}{9} \int_{0}^{1} \frac{1}{(t + \frac{1}{3})^{2}} dt$$

$$= \frac{2}{9} \int_{0}^{1} (t + \frac{1}{3})^{-2} dt$$

$$= \frac{2}{9} \left[-(t + \frac{1}{3})^{-1} \right]_{0}^{1}$$

$$= -\frac{2}{9} \left[(1 + \frac{1}{3})^{-1} - (0 + \frac{1}{3})^{-1} \right]$$

$$= -\frac{2}{9} \left[\frac{3}{4} - 3 \right]$$

$$= -\frac{2}{9} \left[-\frac{9}{4} \right]$$

$$= \frac{1}{2}$$

1 – correct use of t substitution and simplification

3

- 1 Correct Integration
- 1 final answer

- (c) The line l_1 passes through the points A(2,-1,4) and B(4,-3,2).
 - (i) Show that a vector equation of line l_1 is $\underline{r} = \lambda \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$.

$$r = k \overrightarrow{AB} + \overrightarrow{OA}$$

$$\overrightarrow{OA} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

$$\overrightarrow{AB} = \begin{bmatrix} 4-2 \\ -3-(-1) \\ 2-4 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$r = k \begin{pmatrix} 2 \end{pmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$
$$= \lambda \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

- 1 finding vector AB
- **1** for establishing correct equation and relationships, using correct vector equations and notations.

Find the value of k for which l_1 and l_2 intersect.

Substitute Equations *II* and *III* into equation *B*:

$$\frac{4 - (-1 - \lambda)}{6} = 4 - \lambda - 1$$
$$5 + \lambda = 18 - 6\lambda$$
$$\lambda = \frac{13}{7}$$

Substitute equations I and II into equation A:

$$\frac{2+\lambda+3}{k} = 4-\lambda-1$$
$$5+\lambda = k(3-\lambda)$$
$$k = \frac{5+\lambda}{3-\lambda}$$

Substituting the value for λ

$$k = \frac{5 + \frac{13}{7}}{3 - \frac{13}{7}}$$
$$= 6$$

1 – Stablishing relationships for line 2

1 – equating the coordinates of the two lines and calculating lambda

1 – calculation of k.

(d) The diagram shows a triangle ABC.

The points *X*, *Y* and *Z* bisect the intervals *AB*, *BC* and *CA* respectively.

Show that
$$\overrightarrow{AY} + \overrightarrow{BZ} + \overrightarrow{CX} = 0$$

$$\overrightarrow{CA} + \overrightarrow{AB} + \overrightarrow{BC} = 0$$

$$2 \times \overrightarrow{CZ} + 2 \times \overrightarrow{AX} + 2 \times \overrightarrow{BY} = 0$$

$$2 \times \left(\overrightarrow{CZ} + \overrightarrow{AX} + \overrightarrow{BY} \right) = 0$$

$$\left(\overrightarrow{CZ} + \overrightarrow{AX} + \overrightarrow{BY} \right) = 0$$

$$\overrightarrow{AY} = \overrightarrow{CY} - \overrightarrow{CA}$$

$$\overrightarrow{BZ} = \overrightarrow{AZ} - \overrightarrow{AB}$$

$$\overrightarrow{CX} = \overrightarrow{BX} - \overrightarrow{BC}$$

By adding

$$\overrightarrow{AY} + \overrightarrow{BZ} + \overrightarrow{CX} = (\overrightarrow{CY} - \overrightarrow{CA}) + (\overrightarrow{AZ} - \overrightarrow{AB}) + (\overrightarrow{BX} - \overrightarrow{BC})$$

$$= (\overrightarrow{CY} + \overrightarrow{AZ} + \overrightarrow{BX}) - (\overrightarrow{CA} + \overrightarrow{AB} + \overrightarrow{BC})$$

$$= 0 + 0$$

$$= 0$$

Alternative Solution:

$$\overrightarrow{AY} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB}$$

$$\overrightarrow{BZ} = \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AC}$$

$$\overrightarrow{CX} = \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA}$$

$$\overrightarrow{AY} + \overrightarrow{BZ} + \overrightarrow{CX} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB} + \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AC} + \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA}$$

$$= \frac{3}{2}(\overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AC})$$

$$= \frac{3}{2}(0)$$

$$= 0$$

1 – Establishing base relations between required vectors and sides of the triangle which will lead to a solution

3

- **1** Developing reasonable steps to lead to the answer
- 1 complete solution.

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) If $x \le 1$ and $y \ge 1$ show that $x + y \ge 1 + xy$.

$ x \le 1 \\ x - 1 \le 0 \qquad I $		1 - stablishing the relationships
$y \ge 1$		2 - full solution
$y-1 \ge 0$	I	
(1)(1)		
$(y-1)(x-1) \le 0 \qquad \text{Fr}$	rom I and II	
$xy - x - y + 1 \le 0$		
$xy + 1 \le x + y$		

2

(b) Simplify fully $\frac{1}{1+\omega} + \frac{1}{1+\omega^2}$, given that ω is a non-real cube root of unity.

 $z^{3} = 1$ $z^{3} - 1 = 0$ $(z - 1)(1 + z + z^{2}) = 0$ $1 + \omega + \omega^{2} = 0$ $\frac{1}{1 + \omega} + \frac{1}{1 + \omega^{2}} = \frac{1 + \omega^{2} + 1 + \omega}{(1 + \omega)(1 + \omega^{2})}$ $= \frac{1 + \omega + \omega^{2} + 1}{1 + \omega + \omega^{2} + \omega^{3}}$ $= \frac{0 + 1}{0 + \omega^{3}}$ Since $1 + \omega + \omega^{2} = 0$ $= \frac{1}{\omega^{3}} = 1$ Since $\omega^{3} = 1$

(c) As shown on the Argand diagram below, the complex numbers z and zw are represented by the points A and B respectively.

Given $z = re^{i\theta}$ and $w = e^{i\frac{\pi}{3}}$, where r > 0,

(i) Explain why *OAB* is an equilateral triangle.

2

2

• Multiplying by z by $e^{i\frac{\pi}{3}}$ rotates the vector represented by z anticlockwise through an angle of $\frac{\pi}{3}$.

The length of z is unchanged as |w| = 1.

• Thus |zw| = |z| = r and $\angle AOB = \frac{\pi}{3}$.

Any isosceles triangle with the angle between the equal sides being $\frac{\pi}{3}$ is an equilateral triangle.

- 1 stating reason for angle being 60 as well as length of sides
- 2 full solution

(ii) Write the complex number z - zw in exponential form in terms of r and θ .

 $z - zw = \overrightarrow{BA}$

$$arg(z-zw) = \frac{\pi}{3} - \theta$$

|BA| = |OB| = |OA| = r Equilateral triangle |z - zw| = r

$$z - zw = re^{i\left(\frac{\pi}{3} - \theta\right)}$$

1 – answer in exponential form $re^{i\theta}$ with correct modulus;

1 – correct angle $(\frac{\pi}{3} - \theta)$

(d) (i) Use a suitable substitution to show that
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

$$RHS = \int_{0}^{a} f(a-x)dx$$

$$= \int_{a}^{0} -f(u) du$$

$$= -\int_{0}^{a} -f(u) du$$

$$= \int_{0}^{a} f(x)dx$$

$$= LHS$$

$$Let \quad u = a - x \quad du = -dx$$

$$When \quad x = a \quad u = 0 \quad x = 0$$

(ii) Hence, or otherwise, evaluate
$$\int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x + \sin x} dx.$$
 3

$$\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x + \sin x} dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin\left(\frac{\pi}{4} - x\right)}{\cos\left(\frac{\pi}{4} - x\right) + \sin\left(\frac{\pi}{4} - x\right)} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\sin \frac{\pi}{4} \cos x - \cos \frac{\pi}{4} \sin x}{\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x + \sin \frac{\pi}{4} \cos x - \cos \frac{\pi}{4} \sin x} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\cos x - \sin x}{\cos x + \sin x + \cos x - \sin x} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\cos x - \sin x}{2 \cos x} dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \tan x) dx$$

$$= \frac{1}{2} \left[x + \ln \left| \cos x \right| \right]_{0}^{\frac{\pi}{4}}$$

$$= \frac{1}{2} \left[\left(\frac{\pi}{4} + \ln \frac{1}{\sqrt{2}} \right) - (0 + \ln 1) \right]$$

$$= \frac{1}{2} \left(\frac{\pi}{4} + \ln \frac{1}{\sqrt{2}} \right)$$

(e) A recurrence relation is defined by $u_{n+1} = \frac{3u_n - 1}{4u_n - 1}$ and $u_1 = 1$.

3

Use Mathematical Induction to prove that $u_n = \frac{n}{2n-1}$ for $n \ge 1$.

Let
$$n = 1$$

 $LHS = u_n = 1$
 $RHS = \frac{1}{2(1)-1} = \frac{1}{1} = 1$

True for n = 1

Assume true for n = k, where k is a positive integer.

$$u_k = \frac{k}{2k - 1}$$

Prove true for n = k + 1 if true n = k.

Aim: Prove that: $u_{k+1} = \frac{k+1}{2(k+1)-1}$ $u_{k+1} = \frac{k+1}{2k+1}$

$$LHS = u_{n+1}$$

$$= \frac{3u_k - 1}{4u_k - 1}$$

$$= \frac{3\left(\frac{k}{2k - 1}\right) - 1}{4\left(\frac{k}{2k - 1}\right) - 1}$$

$$= \frac{3k - (2k - 1)}{4k - (2k - 1)}$$

$$= \frac{k + 1}{2k + 1}$$

$$= RHS$$

By Mathematical induction $u_n = \frac{n}{2n-1}$ is true for all integers, $n \ge 1$.

Question 15 (14 marks) Use a SEPARATE writing booklet

(a) (i) Show that $a^2 + 9b^2 \ge 6ab$, where a and b are real numbers.

$$(a-3b)^{2} \ge 0$$

$$a^{2}-6ab+9b^{2} \ge 0$$

$$a^{2}+9b^{2} \ge 6ab$$

1 – correct setting out and result

1

2

2

(ii) Hence, or otherwise, show that $a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$.

1 – setting up the 3 inequalities or equivalent merit

1 – correct setting and result

(iii) Hence if a > b > c > 0, show that $a^2 + 5b^2 + 9c^2 > 9bc$.

a > b > c > 0

$$ab > b^2 > bc > 0$$

$$ab > bc$$
 I

1 – using given condition to setup the 3 inequalities or equivalent merit

1 – correct setting and result

a > b > c > 0

$$ac > bc > c^2 > 0$$

$$ac > bc$$
 II

$$a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$$
 From Part ii)

$$\geq 3(bc+bc+ac)$$
 From I

$$\geq 3(bc+bc+bc)$$
 From II

$$=9bc$$

$$\therefore a^2 + 5b^2 + 9c \ge 9bc$$

(b) Consider the integral
$$I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx$$
.

Use integration by parts to show that $I_n = \frac{2n}{2n+1}I_{n-1}$.

$$I_{n} = \int_{0}^{1} \frac{x^{n}}{\sqrt{1-x}} dx$$

$$u = x^{n} \qquad v' = \frac{1}{\sqrt{1-x}} = (1-x)^{\frac{1}{2}}$$

$$u' = nx^{n-1} \qquad v = -2(1-x)^{\frac{1}{2}} = -2\sqrt{1-x}$$

$$I_{n} = \left[-2nx^{n-1}\sqrt{1-x}\right]_{0}^{1} - \int_{0}^{1} -2nx^{n-1}\sqrt{1-x} dx$$

$$I_{n} = \left[\left(-2n(1)^{n-1}\sqrt{1-1}\right) - \left(-2n(0)^{n-1}\sqrt{1-0}\right)\right]_{0}^{1} + 2n\int_{0}^{1} \frac{x^{n-1}(1-x)}{\sqrt{1-x}} dx$$

$$I_{n} = 0 + 2n\int_{0}^{1} \frac{x^{n-1} - x^{n}}{\sqrt{1-x}} dx$$

$$I_{n} = 2n(I_{n-1} - I_{n})$$

$$I_{n} = 2nI_{n-1} - 2nI_{n}$$

$$(2n+1)I_{n} = 2nI_{n-1}$$

$$I_{n} = \frac{2n}{2n+1}I_{n-1}$$

$$1 - \text{correct setup of parts}$$

$$1 - \text{correct algebraic manipulation}$$

$$1 - \text{correct integration}$$

$$1 - \text{correct answer}$$

Question 15 Continues on Page 13

(c) The diagram below shows the line with vector equation $r = \lambda \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$.

The point $P(x_1, y_1, z_1)$ is any point in the three-dimensional space. Q is the point on r such that PQ is a minimum.

(i) Using vector projection methods show that:

$$\overrightarrow{OQ} = \frac{x_1 + 3y_1 + z_1}{11} \begin{bmatrix} 1\\3\\1 \end{bmatrix}.$$

$$\overrightarrow{OQ}$$
 is the projection of \overrightarrow{OP} onto line $r = \lambda \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$.

Let
$$\overrightarrow{OP} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ which is a vector on \underline{r}

$$\overrightarrow{OQ} = proj_{\underline{b}} \overrightarrow{OP}$$

$$= \frac{\overrightarrow{OP} \cdot \underline{b}}{|\underline{b}|^2} \times \underline{b}$$

$$= \frac{(1)(x_1) + (3)(y_1) + (1)(z_1)}{1^2 + 3^2 + 1^2} \times \begin{bmatrix} 1\\3\\1 \end{bmatrix}$$

$$= \frac{x_1 + 3y_1 + z_1}{11} \begin{bmatrix} 1\\3 \end{bmatrix}$$

1 – correct projection formula and application

2

1 – correct answer

It is given that line
$$c = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$$
 does not intersect.

Point T is on the line c and S is a point on c such that TS is a minimum.

(ii) By first expressing \underline{c} in parametric form, find an expression for the vector \overrightarrow{TS} in terms of t.

If
$$T$$
 is any point on $c = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$ then the vector \overrightarrow{OT} in terms of t is $\begin{bmatrix} 1-t \\ 4+t \\ 5t \end{bmatrix}$.

By substituting the parametric equation into the result in part i)

$$\overrightarrow{OS} = \frac{(1-t)+3(4+t)+(5t)}{11} \begin{bmatrix} 1\\3\\1 \end{bmatrix}$$

$$\overrightarrow{OS} = \frac{13 + 7t}{11} \begin{bmatrix} 1\\3\\1 \end{bmatrix}$$

$$\overrightarrow{TS} = \overrightarrow{OS} - \overrightarrow{OT} = \frac{13 + 7t}{11} \begin{bmatrix} 1\\3\\1 \end{bmatrix} - \begin{bmatrix} 1 - t\\4 + t\\5t \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} (13 + 7t) - 11(1 - t)\\3(13 + 7t) - 11(4 + t)\\(13 + 7t) - 11(5t) \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} 2 + 18t\\-5 + 10t\\13 - 48t \end{bmatrix}$$

1 – correct parametric representation of T as a point on $\, {\it c} \,$

3

- **1** correct calculation of \overrightarrow{TS}
- 1 correct answer

Question 16 (15 marks) Use a SEPARATE writing booklet

(a) (i) Prove that:

$$\frac{\cos\theta + i\sin\theta - 1}{\cos\theta + i\sin\theta + 1} = i\tan\frac{\theta}{2}.$$

Let
$$t = \tan \frac{\theta}{2}$$

$$LHS = \frac{\cos \theta + i \sin \theta - 1}{\cos \theta + i \sin \theta + 1}$$

$$= \frac{\frac{1 - t^2}{1 + t^2} + i \frac{2t}{1 + t^2} - 1}{\frac{1 - t^2}{1 + t^2} + i \frac{2t}{1 + t^2} + 1}$$

$$= \frac{1 - t^2 + 2ti - 1 - t^2}{1 - t^2 + 2ti + 1 + t^2}$$

$$= \frac{2ti - 2t^2}{2 + 2ti}$$

$$= \frac{t(i - t)}{1 + ti}$$

$$= \frac{ti(1 - \frac{t}{i})}{1 + ti}$$

$$= \frac{ti(1 + ti)}{1 + ti}$$

$$= it$$

$$= i \tan \frac{\theta}{2}$$

(ii) Find the roots of the equation $w^5 = 1$. Express your answers in the form $(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$.

 $(\cos \theta + i \sin \theta)^{5} = 1$ $(\cos 5\theta + i \sin 5\theta) = (\cos 2k\pi + i \sin 2k\pi)$ Where k is an integer. $5\theta = 2k\pi$ $\theta = \frac{2k\pi}{5}$

$$w = \cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}$$
 Where $k = 0, \pm 1, \pm 2$

$$\left(\frac{2+z}{2-z}\right)^5 = 1$$

Since
$$w^5 = 1$$

$$\frac{2+z}{2-z} = w$$

$$2+z = w(2-z)$$

$$2+z = 2w-zw$$

$$zw+z = 2w-2$$

$$z(w+1) = 2(w-1)$$

$$z = \frac{2(w-1)}{w+1}$$

Since $w^5 = 1$ and from part (ii)

 $w = \cos \theta + i \sin \theta$

$$\theta = \frac{2k\pi}{5}$$
 Where $k = 0, \pm 1, \pm 2$

And from Part (i)

$$z = \frac{2(\cos\theta + i\sin\theta - 1)}{\cos\theta + i\sin\theta + 1}$$
$$= 2i\tan\frac{\theta}{2}$$

For
$$\theta = \frac{2k\pi}{5}$$
 Where $k = 0, \pm 1, \pm 2$

$$z = 2i \tan\left(\frac{-2\pi}{5}\right), \qquad 2i \tan\left(\frac{-\pi}{5}\right), \quad 2i \tan\left(0\right), \qquad 2i \tan\left(\frac{\pi}{5}\right), \quad 2i \tan\left(\frac{2\pi}{5}\right)$$

(b) (i) Show that
$$\frac{1}{(k-1)k(k+1)} \ge \frac{1}{k^3}$$
 where k is a positive integer greater than 1.

$$S_n = \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \dots + \frac{1}{n^3}$$
 where *n* is an integer and $n \ge 3$.

$$\frac{1}{(k-1)k(k+1)} = \frac{A}{(k-1)} + \frac{B}{k} + \frac{C}{(k+1)}$$

$$1 = Ak(k+1) + B(k-1)(k+1) + C(k-1)k$$

$$k = 0 \qquad k = 1 \qquad k = 1$$

$$1 = B(-1)(1) \qquad 1 = A(1+1) \qquad 1 = +C(-1-1)(-1)$$

$$B = -1 \qquad A = \frac{1}{2} \qquad C = \frac{1}{2}$$

$$\frac{1}{(k-1)k(k+1)} = \frac{1}{2(k-1)} - \frac{1}{k} + \frac{1}{2(k+1)}$$

$$\frac{1}{k^3} \le \frac{1}{2(k-1)} - \frac{1}{k} + \frac{1}{2(k+1)}$$

$$k = 3 \qquad \frac{1}{3^3} \le \frac{1}{2 \times 2} - \frac{1}{3} + \frac{1}{2 \times 4}$$

$$k = 4 \qquad \frac{1}{4^3} \le \frac{1}{2 \times 3} - \frac{1}{4} + \frac{1}{2 \times 5}$$

$$k = 5 \qquad \frac{1}{5^3} \le \frac{1}{2 \times 4} - \frac{1}{5} + \frac{1}{2 \times 6}$$

$$k = 6 \qquad \frac{1}{6^3} \le \frac{1}{2 \times 5} - \frac{1}{6} + \frac{1}{2 \times 7}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$k = n - 2 \qquad \frac{1}{(n-2)^3} \le \frac{1}{2 \times (n-3)} - \frac{1}{(n-2)} + \frac{1}{2 \times (n-1)}$$

$$k = n - 1 \qquad \frac{1}{(n-1)^3} \le \frac{1}{2 \times (n-1)} - \frac{1}{n} + \frac{1}{2 \times (n+1)}$$

Using part (i) or otherwise, prove that $S_n < \frac{1}{12}$.

By adding and cancelling

$$S_{n} \leq \frac{1}{4} - \frac{1}{3} + \frac{1}{6} - \frac{1}{2n} - \frac{1}{n} + \frac{1}{2n+2}$$

$$S_{n} \leq \frac{1}{12} - \frac{1}{2n} + \frac{1}{2n+2}$$

$$S_{n} \leq \frac{1}{12} + \frac{-n-1+n}{2n(n+1)}$$

$$S_{n} \leq \frac{1}{12} + \frac{-1}{2n(n+1)}$$

$$S_{n} \leq \frac{1}{12} \quad \text{Since } \frac{-1}{2n(n+1)} < 0$$

(c) Find
$$\int \frac{\ln x - 1}{\left[x + \ln x\right]^2} dx.$$

$$I = \int \frac{\ln x - 1}{\left[x + \ln x\right]^2} dx$$

$$= \int \frac{x + \ln x - x - 1}{\left[x + \ln x\right]^2} dx$$

$$= \int \frac{x + \ln x}{\left[x + \ln x\right]^2} dx - \int \frac{x + 1}{\left[x + \ln x\right]^2} dx$$

$$= \int \frac{1}{x + \ln x} dx - \int \frac{x\left(1 + \frac{1}{x}\right)}{\left[x + \ln x\right]^2} dx$$

$$= \int \frac{1}{x + \ln x} dx - J$$

Let
$$J = \int \frac{x(1+\frac{1}{x})}{\left[x+\ln x\right]^2} dx$$

By using integration by parts on J

$$u = x$$

$$v' = \frac{\left(1 + \frac{1}{x}\right)}{\left[x + \ln x\right]^2}$$

$$u' = 1$$

$$v = \frac{-1}{x + \ln x}$$
 by Reverse Chain Rule

$$J = x \left(\frac{-1}{x + \ln x}\right) - \int \frac{-1}{x + \ln x} dx$$
$$= \frac{-x}{x + \ln x} + \int \frac{1}{x + \ln x} dx$$

$$= \int \frac{1}{x + \ln x} dx - \left(\frac{-x}{x + \ln x} + \int \frac{1}{x + \ln x} dx\right)$$
$$= \frac{x}{x + \ln x} + C$$

Alternative Solutions

14 (a)

Alternative 1:

Assume x + y < 1 + xy

Then xy-x-y+1>0

$$x(y-1)-1(y-1)>0$$

$$(x-1)(y-1) > 0$$

But $x-1 \le 0 \quad (x \le 1)$

and $y-1 \ge 0 \quad (y \ge 1)$

Therefore $(x-1)(y-1) \le 0$

Therefore, by contradiction, $x + y \ge 1 + xy$

Alternative 2:

 $y \ge 1$ and $1-x \ge 0$ (Given)

Therefore $y(1-x) \ge (1-x)$

$$y - xy \ge 1 - x$$

$$x + y \ge xy + 1$$

Alternative 1:

$$\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = \frac{1+\omega^2 + 1 + \omega}{(1+\omega)(1+\omega^2)}$$

$$= \frac{2+\omega+\omega^2}{1+\omega+\omega^2+\omega^3}$$

$$= \frac{2+\omega+\omega^2}{1+\omega+\omega^2+1}$$

$$= \frac{2+\omega+\omega^2}{2+\omega+\omega^2}$$

$$= 1$$
Since $\omega^3 = 1$

Alternative 2:

 $\omega^3 = 1$

$$\omega = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i \qquad \text{since } \omega \text{ is complex cube root of unity.}$$

$$\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = \frac{1}{1-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i} + \frac{1}{1+\left(-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)^2}$$

$$= \frac{1}{\frac{1}{2} \pm \frac{\sqrt{3}}{2}i} + \frac{1}{1+\frac{1}{4} - \frac{3}{4} \mp \frac{\sqrt{3}}{2}i}$$

$$= \frac{2}{1 \pm \sqrt{3}i} + \frac{2}{1 \mp \sqrt{3}i}$$

$$= \frac{2(1-\sqrt{3}i) + 2(1+\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)} \quad \text{or} \quad \frac{2(1+\sqrt{3}i) + 2(1-\sqrt{3}i)}{(1-\sqrt{3}i)(1+\sqrt{3}i)}$$

$$= \frac{4}{1+3}$$

$$= 1$$

14 (d) (i)

$$LHS = \int_0^a f(x) dx$$

$$= \int_a^0 -f(a-u) du$$

$$= -\int_0^a -f(a-u) du$$

$$= \int_0^a f(a-u) du$$

$$= \int_0^a f(a-u) du$$

$$= \int_0^a f(a-x) dx$$

$$= RHS$$

End of paper